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We study the effective conductivity se for a random wire problem on the
d-dimensional cubic lattice Zd, d \ 2 in the case when random conductivities on
bonds are independent identically distributed random variables. We give exact
expressions for the expansion of the effective conductivity in terms of the
moments of the disorder parameter up to the 5th order. In the 2D case using the
duality symmetry we also derive the 6th order expansion. We compare our
results with the Bruggeman approximation and show that in the 2D case it
coincides with the exact solution up to the terms of 4th order but deviates from
it for the higher order terms.
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1. INTRODUCTION

The problem of conductivity of the random composite medium and the
equivalent problem of diffusion in a symmetric (self-adjoint) random envi-
ronment has been a subject of intensive study for the last 25 years. It is
virtually impossible to give a full reference list and we just mention few
papers where the mathematical aspects of the theory were considered for
the first time: refs. 1–4. In the mathematical literature this problem usually
is quoted as the problem of homogenization for the second order elliptic
differential operators with random coefficients. Roughly speaking the main
result can be formulated in the following way: there exists a non-random
effective conductivity tensor or effective diffusion matrix such that the
asymptotic properties of the system are the same as for a homogeneous



system governed by the effective parameters. The subject is a very active
research area till now with a vast number of papers publishing every year.
However there are very few results related to the problem of calculation of
effective conductivity and diffusion matrix. In addition to the trivial one-
dimensional case such results are known only in the self-dual situation in
dimension two (Keller–Dykhne duality) and in the case of two-component
systems where the analytic continuation method is used to express the
effective conductivity as an analytic function of the ratio of the conductivi-
ties of two components (see refs. 5–9). In this paper we discuss a very
general rigorous method in the lattice case which was developed in ref. 4.
The method is based on a convergent power series expansion for the effec-
tive parameters and can be applied for arbitrary probability distribution of
random conductivities. However, the combinatorics of this expansion is
rather complicated. That is a reason why it was not used for concrete cal-
culations in the past.
The present paper has two main goals. First of all we demonstrate the

constructive potential of the method in ref. 4 and give exact formulae for
the first 5 orders of the expansion for the effective conductivity in arbitrary
dimension. In the 2D case we also calculate the 6th order terms. We then
use our exact results to study the quality of the classical Bruggeman
approximation. We show that in the 2D case the Bruggeman approxima-
tion is extremely accurate and coincides with the exact answer up to the
terms of the 4th order. We assume everywhere that the random con-
ductivities ( jump rates) are independent identically distributed random
variables. Although we consider only the case of Zd lattice we strongly
believe that the method can be generalized for other types of lattices and
even for the continuous situation.
Yakov Sinai was a teacher of one of us and it is our pleasure to dedi-

cate this paper to his 65th birthday. In fact one of the motivations for this
paper was to illuminate the method developed together with Yakov
Grigorevich and to demonstrate its effective power.

2. EFFECTIVE CONDUCTIVITY ON Zd LATTICE

2.1. Exact Expansion for Effective Conductivity

We consider effective conductivity for a random wire problem on the
d-dimensional cubic lattice Zd, d \ 2. Throughout the paper we assume
that bond conductivities s are independent identically distributed positive
random variables. We are not making any assumptions on a probability
distribution of s which can be either discrete or continuous. As we have
mentioned above the calculation of the effective conductivity is equivalent
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to the calculation of the effective diffusion matrix for the continuous time
random walk in random environment. In this case random conductivities
should be understood as jump rates through the corresponding bond. We
shall use the formula for the effective diffusion matrix Me which was
obtained in ref. 4. This formula is given by a convergent series where the
role of small parameter is played by a deviation of a random variable s
from its average value OsP. Since we consider transitions only along the
bonds of Zd lattice with i.i.d. transition rates s, the effective diffusion
matrix is a scalar matrix: Me=2seI, where effective diffusion coefficient
(or effective conductivity) se can be expressed in terms of a convergent
power series. We first introduce the necessary notations.
A path c={(z1, a1), (z2, a2),..., (zk, ak)} is a finite sequence of pairs

(z, a) where z is a point of lattice Zd and a=1, 2,..., d corresponds to one
of the d possible directions. Notice that zi, zi+1 are not necessarily neigh-
bours on the lattice. The sum of two paths c=c1+c2 is simply the ordered
union of two sequences where the pairs of the second path follow the pairs
of the first one. With each pair (z, a) we associate a random variable
sa(z)=s(z, z+ea), where ea is a unit vector in the direction a and
s(z, z+ea) is the random transition rate (conductivity) along the bond
(z, z+ea). Denote by ua(z)=

sa(z)−OsP
OsP

and define for each path c={(z1, a1),
(z2, a2),..., (zk, ak)} the moment

OcP=7D
k

i=1
uai (zi)8 . (1)

A convergent expansion below for the effective conductivity is expressed
through the moments of a random variable u. We shall also need the
following cumulant of a path c:

E(c)= C
k

m=1
(−1)m−1 C

c1+· · ·+cm=c
D
m

j=1
OcjP, (2)

where summation in (2) is taken over all possible partitions of the path c
into a sum of paths cj. Finally we define a kernel Cab(z):

Cab(z)=−F
1

0
· · ·F

1

0

sin pla sin plb cos 2p((l, z)−
1
2 la+

1
2 lb)

;d
c=1 sin

2 plc
D
d

c=1
dlc, (3)

where l=(l1,..., ld). Notice that Caa(0)=−
1
d and Cab(z)=Cba(−z). We

can now write the following exact formula for se:

se=OsP11+C
.

k=2
A (k)2 , (4)
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where

A (k)= C
c={(z1, a1),..., (zk, ak)} ¥ G

(k)
1

E(c) D
k−1

i=1
Caiai+1 (zi+1−zi). (5)

Here G (k)1 is the set of all possible paths c={(z1, a1),..., (zk, ak)} such that
z1=0 and a1=ad=1. It has been proven in ref. 4 that the infinite sum in
(5) is absolutely convergent. That is due to the fact that for the paths c
which might lead to divergence of A (k) one has E(c)=0. It was also shown
that the expansion in (4) is absolutely convergent and gives an exact value
of se provided |u| [ u0 < 1/2. The last condition is technical and probably
can be improved. In the following proposition we rewrite (4), (5) in a
slightly different way.

Proposition 1 (ref. 4). Assume that there exists a constant u0 <
1
2

such that |u| [ u0 with probability 1. Then for any dimension d

se=OsP11+C
.

k=2
C
[k
2
]

m=1
C

s1,..., sm \ 2
s1+· · ·+sm=k

ads1,..., smOu
s1P · · ·Ou smP2 , (6)

where the constants ads1,..., sm depend only on dimension d and [ · ] denotes
the integer part. Moreover, for any n \ 1 the following estimate holds

:se−OsP11+C
n

k=2
C
[k
2
]

m=1
C

s1,..., sm \ 2
s1+· · ·+sm=k

ads1,..., smOu
s1P · · ·Ou smP2: [ (2u0)

n+1

1−2u0
. (7)

Note that the series in (6) is absolutely convergent.

2.2. The 4th Order Expansion

It is easy to see that only those paths for which each pair (z, a) is
present at least twice give nonzero contribution to (5). This immediately
implies that

A (2)=Ou2P C11(0)=−
Ou2P
d
, A (3)=Ou3P C211(0)=

Ou3P
d2
. (8)

Hence the 3rd order approximation to se is given by

s (3)e =OsP11−Ou
2P

d
+
Ou3P
d2
2 . (9)
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In the 4th order the combinatorics is slightly more complicated. Indeed,
nonzero contributions correspond to the paths

c(4)={(0, 1), (0, 1), (0, 1), (0, 1)},

c11, z(4)={(0, 1), (z, 1), (z, 1), (0, 1)}, z ] 0,

ca, z(4)={(0, 1), (z, a), (z, a), (0, 1)}, a ] 1,

c21, z(4)={(0, 1), (z, 1), (0, 1), (z, 1)}, z ] 0.

Another possible type of paths c31, z(4)={(0, 1), (0, 1), (z, 1), (z, 1)}, z ] 0
gives zero contribution since E(c31, z(4))=0. Easy calculation gives

A (4)=[(Ou4P−Ou2P2) C311(0)]+5Ou2P2 C11(0)1 C
z ¥ Z

d
C211(z)−C

2
11(0)26

+5Ou2P2 1 C
z ¥ Z

d
C311(z)−C

3
11(0)26+C

d

a=2

5Ou2P2 Caa(0) C
z ¥ Z

d
C21a(z)6 .

(10)

Notice that

C
z ¥ Z

d
C2ba(z)=F

1

0
· · ·F

1

0

sin2 plb sin2 pla
(;d

c=1 sin
2 plc)2

D
d

c=1
dlc. (11)

Hence

C
d

b, a=1
C
z ¥ Z

d
C2ba(z)=1. (12)

Since

C
d

a=1
C
z ¥ Z

d
C2ba(z) (13)

does not depend on b we get

C
d

a=1
C
z ¥ Z

d
C21a(z)=

1
d
. (14)

Using (10, 14) we obtain

A (4)=−
1
d3

Ou4P−
d−2
d3

Ou2P2+Ou2P2 C
z ] 0
C311(z). (15)
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The third term in (15) vanishes in the 2D case. Indeed, if z=(x, y) we have
C11(x, y)=C22(y, x). Obviously C11(y, x)+C22(y, x)=0 if (y, x) ] (0, 0).
Hence, for nonzero (x, y) we have C11(y, x)=−C11(x, y) which immedi-
ately implies ;z ] 0 C

3
11(z)=0. As a result we obtain the 4th order approx-

imation for d=2:

s (4)e =OsP(1− 12 Ou
2P+14 Ou

3P− 18 Ou
4P). (16)

We next demonstrate that for d \ 3

C
z ¥ Z

d
C311(z) ] −

1
d3

(17)

which implies

C
z ] 0
C311(z) ] 0. (18)

Denote H(d)=−d3;z ¥ Z
d C311(z). Using simple Fourier analysis we have

H(d)=F
1

0
· · ·F

1

0
H(l, m) D

d

c=1
dlc D

d

c=1
dmc, (19)

where

H(l, m)=
sin2(p(l1+m1))

1
d ;

d
c=1 sin

2(p(lc+mc))
sin2(pl1)

1
d ;

d
c=1 sin

2(plc)
sin2(pm1)

1
d ;

d
c=1 sin

2(pmc)
.

(20)

As we have explained above the symmetry in the 2D case gives
;z ] 0 C

3
11(z)=0 which is equivalent to H(2)=1. We conjecture that H(d)

is a strictly decreasing function of d. The conjecture implies that
;z ] 0 C

3
11(z) > 0 for all d \ 3. Although the conjecture above was not

proven rigorously we have checked it numerically for 3 [ d [ 5:

H(3)=0.923, H(4)=0.874, H(5)=0.846. (21)

Finally, we get the following 4th order approximation in an arbitrary
dimension:

s (4)e =OsP11−1
d
Ou2P+

1
d2

Ou3P−
1
d3

Ou4P−
d+H(d)−3

d3
Ou2P22 . (22)
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2.3. The 5th Order Expansion

We proceed with the 5th order calculations. The following paths give
nonzero contributions:

c(5)={(0, 1), (0, 1), (0, 1), (0, 1), (0, 1)},

c1a, z(5)={(0, 1), (z, a), (z, a), (z, a), (0, 1)}

c2a, z(5)={(0, 1), (0, 1), (z, a), (z, a), (0, 1)},

c3a, z(5)={(0, 1), (z, a), (0, 1), (z, a), (0, 1)}

c4a, z(5)={(0, 1), (z, a), (z, a), (0, 1), (0, 1)},

c̃11, z(5)={(0, 1), (z, 1), (0, 1), (z, 1), (z, 1)}

c̃21, z(5)={(0, 1), (z, 1), (z, 1), (0, 1), (z, 1)},

c̃31, z(5)={(0, 1), (z, 1), (0, 1), (0, 1), (z, 1)}

c̃41, z(5)={(0, 1), (0, 1), (z, 1), (0, 1), (z, 1)}.

Notice that in the case a=1 the summation in the paths c s1, z(5), c̃
s
1, z(5),

1 [ s [ 4 is performed over all z ] 0. Using (5) we get

A (5)=
1
d4

Ou5P+K5(d)Ou2POu3P, (23)

where

K5(d)=C
d

a=1

1 3
d2

C
z ¥ Z

d
C21a(z)+ C

z ¥ Z
d
C41a(z)2−

6
d4
−
4
d

C
z ] 0
C311(z). (24)

This together with (14) gives

K5(d)=
3(d−2)
d4

+C
d

a=1
C
z ¥ Z

d
C41a(z)−

4
d

C
z ] 0
C311(z). (25)

In the 2D case both the first and the last term in (25) vanish and

K5(2)= C
z ¥ Z

2
C411(z)+ C

z ¥ Z
2
C412(z)=I1+I2, (26)
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where

I1=F
1

0
F
1

0
h21(l1, l2) dl1 dl2,

h1(l1, l2)=F
1

0
F
1

0

sin2 p(l1−m1) sin2 pm1 dm1 dm2
(sin2 p(l1−m1)+sin2 p(l2−m2))(sin2 pm1+sin2 pm2)

(27)

and

I2=F
1

0
F
1

0
h22(l1, l2) dl1 dl2,

h2(l1, l2)=F
1

0
F
1

0

sin p(l1−m1) sin p(l2−m2) sin pm1 sin pm2 dm1 dm2
(sin2 p(l1−m1)+sin2 p(l2−m2))(sin2 pm1+sin2 pm2)

.

(28)

The values of I1, I2 were found numerically: I1=0.06391, I2=0.00439. As
a result we get in the 2D case the following 5th order expansion:

s (5)e =OsP(1− 12 Ou
2P+14 Ou

3P− 18 Ou
4P+ 1

16 Ou
5P+IOu2POu3P), (29)

where I=I1+I2=0.0683.
In the general case d \ 3 we have

C
d

a=1
C
z ¥ Z

d
C41a(z)= C

z ¥ Z
d
C411(z)+C

d

a=2
C
z ¥ Z

d
C41a(z)=I1(d)+(d−1) I2(d),

(30)

where

I1(d)=F
1

0
· · ·F

1

0
h21(l) D

d

c=1
dlc,

h1(l)=F
1

0
· · ·F

1

0

sin2 p(l1−m1) sin2 pm1 <d
c=1 dmc

(;d
c=1 sin

2(p(lc−mc)))(;d
c=1 sin

2(pmc))

(31)

and

I2(d)=F
1

0
· · ·F

1

0
h22(l) D

d

c=1
dlc,

h2(l)=F
1

0
· · ·F

1

0

sin p(l1−m1) sin p(l2−m2) sin pm1 sin pm2 <d
c=1 dmc

(;d
c=1 sin

2(p(lc−mc)))(;d
c=1 sin

2(pmc))
.

(32)
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Collecting all the terms we get

s (5)e =OsP11−1
d
Ou2P+

1
d2

Ou3P−
1
d3

Ou4P−
d+H(d)−3

d3
Ou2P2

+
1
d4

Ou5P+
3d+d4I(d)+4H(d)−10

d4
Ou2POu3P2 , (33)

where I(d)=I1(d)+(d−1) I2(d) and H(d) is given by (19), (20).

2.4. Keller–Dykhne Duality and the 6th Order Expansion in the

2D Case

Although it is possible in principle to calculate an expansion of an
arbitrary order the problem becomes more and more cumbersome for
higher order terms. However in the 2D case one can significantly simplify
calculations using the duality symmetry which was discovered by Keller (10)

and Dykhne. (11) Consider duality transformation

sQ
1
s
. (34)

Denote by {s}, {s−1} the probability distributions for positive random
variables s and s−1 respectively. Then duality symmetry which holds only
in the 2D case implies that

se({s−1})=s
−1
e ({s}). (35)

Although both Keller and Dykhne considered only the continuous systems
the symmetry (35) can be extended to the case of discrete lattice systems
which we study in this paper (see ref. 12). The duality symmetry immedi-
ately implies that in the self-dual case, i.e., when the probability distribu-
tions {s} and {s−1} coincide, the effective conductivity se=1. It also gives
an exact answer in the case which we call almost self-dual. We say that the
probability distribution for a random variable s is almost self-dual with
respect to the duality transformation (34) if there exists a positive constant
s0 such that the probability distribution for s0s is exactly self-dual, i.e.,

{s0s}={(s0s)−1}. (36)

Since se is a homogeneous function of the first order and se({s0s})=1, it
follows that in the almost self-dual situation se({s})=s

−1
0 . Notice that in
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the two-component case with equipartition, i.e., when s takes values s1 and
s2 with probabilities

1
2 the probability distribution for s is almost self-dual

with s0=(`s1s2)−1. Hence,

se=s
−1
0 =`s1s2. (37)

This well-known result by Keller and Dykhne provides one of the very few
exact solutions for the effective conductivity.
We next show that the duality symmetry alone gives a lot of relations

on the coefficients of the expansion (6). In fact we shall be able to recover
the 6th order expansion using only the 5th order and the symmetry. Con-
sider the case when s takes three values: 1− E with probability p, 1−aE
with probability p and 1 with probability 1−2p. Correspondingly a
random variable s−1 takes values 1

1− E and
1
1−aE with probabilities p and 1

with probability 1−2p. We shall use the formula (6) in order to calculate
se({s}) se({s−1}) and check the duality identity (35) subsequently in the
2nd, 4th, 6th and 8th orders of the power series expansion in E. This
inductive procedure allows to find all the relations on the coefficients
a2s1,..., sm . We performed calculations using the Maple symbolic package. In
the 2nd order one immediately gets a22=−

1
2 . The 4th order calculations

give two relations:

a22, 2=
3
2 a
2
3−

3
8 , a24=

1
4−

3
2 a
2
3. (38)

The 6th order expansion provides four more relations:

a22, 2, 2=
7
2 a
2
3+

3
2 a
2
2, 3−

15
16 , a23, 3=

1
2+

1
2 (a

2
3)
2−2a23−a

2
2, 3,

a22, 4=
11
8 −6a

2
3−

3
2 a
2
2, 3+

5
2 a
2
5, a26=

5
2 a
2
3−

5
2 a
2
5−

1
2 .

(39)

Using (29) we have

a23=
1
4 , a25=

1
16 , a22, 3=I=0.0683 (40)

which immediately gives a22, 2=0, a
2
4=−

1
8 and

a22, 2, 2=
3
2 I−

1
16 , a23, 3=

1
32−I, a22, 4=

1
32−

3
2 I, a26=−

1
32 . (41)

As a result we obtain the 6th order expansion in the 2D case:

s (6)e =OsP(1− 12 Ou
2P+14 Ou

3P− 18 Ou
4P+ 1

16 Ou
5P+IOu2POu3P

− 1
32 Ou

6P−(32 I−
1
32)Ou

2POu4P−(I− 1
32)Ou

3P2+(32 I−
1
16)Ou

2P3). (42)
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3. THE BRUGGEMAN APPROXIMATION

3.1. Bruggeman’s Equation

The Effective Medium Approximation (EMA) was invented by
Bruggeman, (13) and has remained one of the most popular approximations
used for calculations of the linear bulk effective electrical conductivity se of
a many-component composite medium. This is mainly due to the simplicity
of EMA and to the fact that it gives accurate results for a wide range of
parameters. It also has a non-trivial percolation threshold which most
other simple approximations do not possess. Another advantage of
Bruggeman’s approximation is connected with the fact that none of the
complicated details of the microstructure are used in its construction. EMA
is only based on the assumptions that the composite is macroscopically
homogeneous and isotropic and that individual grains are spherical. It is
also important to mention that EMA applies without any changes to the
calculation of dielectric susceptibility, magnetic permeability, thermal con-
ductivity and chemical diffusion coefficients, since in all those cases the
mathematical structure of the equations is the same as for electrical
conduction.
Suppose that the values of the component conductivities si and the

component volume fractions pi are given. Then Bruggeman’s equation in
the d-dimensional case has the following form:

C
n

i=1
pi

si−sB
si+(d−1) sB

=0. (43)

From the mathematical standpoint it has many beautiful properties
which are of high importance for the theory of random composites. Equa-
tion (43) has a unique positive root sB(si) which is homogeneous of the
first order, monotone and reducible with respect to the equating of some
constituents. It is also Sn-permutation invariant in the case when all pi are
equal and compatible with a trivial solution sB=s̄ when all si=s̄. Finally,
in the case d=2 the Bruggeman’s solution is self-dual with respect to the
duality transformation (34). Namely, if si Q s

−1
i and pi are unchanged then

sB(s
−1
1 , s

−1
2 ,..., s

−1
n )=s

−1
B (s1, s2,..., sn) . (44)

It follows that sB coincides with Keller–Dykhne solutions in the self-dual
and almost self-dual situations. In particular, sB=`s1s2 for the two-
component system with equipartition and conductivities taken values
s1, s2. Notice that the Bruggeman approximation is also exact in the 1D
case.
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3.2. Solution of Bruggeman’s Equation

Let s be a random variable corresponding to random conductivity.
Then Bruggeman’s equation (43) can be written in terms of averages in the
following form

7 s−sB
s+(d−1) sB

8=0. (45)

Notice that (45) is the most general form of Bruggeman’s equation. We
first show that Bruggeman’s equation (45) has a unique positive solution sB.
Indeed, function

F(x)=7 s−x
s+(d−1) x

8 (46)

is obviously decreasing. Also F(0)=1 and F(x)Q − 1
d−1 as xQ. which

implies the existence and the uniqueness of the solution. We next find the
expansion of sB in terms of the moments of the disorder parameter
u=s−OsP

OsP
. It is convenient to introduce new dimensionless variables

g=
s

OsP
, t=

sB

OsP
. (47)

Obviously u=g−1. In the new variables Bruggeman’s equation (45) takes
the form

7 g−t
g+dt
8=0, (48)

where d=d−1. Notice that

g−t
g+dt

=
1−t
1+dt

+
(d+1) t(g−1)
(1+dt)(g+dt)

=
1−t
1+dt

+
dt u
(1+dt)2

· C
.

n=0
(−1)n 1 u

1+dt
2n. (49)

After the averaging of the both sides in (49) we get

7 g−t
g+dt
8=1−t
1+dt

+
dt
1+dt

· C
.

n=0
(−1)n

Oun+1P
(1+dt)n+1

=0 (50)
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which together with OuP=0 immediately implies

1
t
=1+d C

.

n=2
(−1)n

OunP
(1+dt)n

. (51)

If the random variable u is small enough the solution of equation (51) can
be written as a convergent expansion in terms of the moments of u:

t=1+C
.

k=2
C
[k
2
]

m=1
C

s1,..., sm \ 2
s1+· · ·+sm=k

bds1,..., smOu
s1P · · ·Ou smP. (52)

Notice that this expansion has similar structure to the expansion (6). Easy
calculation leads to the following expansion up to the terms of 6th order:

t (6)=1−
1
d
Ou2P+

1
d2

Ou3P−
1
d3

Ou4P−
d−2
d3

Ou2P2+
1
d4

Ou5P

+
3d−5
d4

Ou2POu3P−
1
d5

Ou6P−
4d−6
d5

Ou2POu4P

−
2d−3
d5

Ou3P2−
2d2−8d+7

d5
Ou2P3, (53)

which gives the 6th order approximation for the Bruggeman approximation

s (6)B =OsP t (6) (54)

and its 2D version

s (6)B =OsP(1− 12 Ou
2P+14 Ou

3P− 18 Ou
4P+ 1

16 Ou
5P+ 1

16 Ou
2POu3P

− 1
32 Ou

6P− 1
16 Ou

2POu4P− 1
32 Ou

3P2+ 1
32 Ou

2P3). (55)

3.3. Effective Conductivity and the Bruggeman Approximation

It follows from (33), (53), (54) that the Bruggeman approximation sB
coincides with the effective conductivity se up to the terms of 3rd order.
However if d \ 3 the 4th order terms are different. Let us assume that

|u| [ E, Ou2P \ cE2. (56)
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Then,

se−sB=OsP11−H(d)
d3

Ou2P2+O(E5)2

\ OsP11−H(d)
d3

c2E4+O(E5)2 . (57)

This implies that for E small enough se > sB. In the 2D case the Bruggeman
approximation is even more accurate. It coincides with se up to the 4th
order terms. Nevertheless, if Os3P does not vanish then se differs from sB
in the 5th order. Assume that (56) holds and in addition |Ou3P| \ cE3. Then,

se−sB=OsP((I− 1
16)Ou

2POu3P+O(E6)). (58)

Since I > 1
16 we have se ] sB for E small enough. Notice that sB is bigger

than se if Ou3P is negative. Finally we consider the symmetric 2D case. We
shall assume that u satisfies (56) and Ou3P=0. Then,

se−sB=OsP(32 (
1
16−I)Ou

2PO(u2−Ou2P)2P+O(E7)). (59)

It follows from (59) that se < sB if O(u2−Ou2P)2P is of the order of E4 and
E is small enough. We summarise all three cases in the following simple
proposition.

Proposition 2.

1. Consider the case d \ 3. If u satisfies (56) then there exists
E(d, c) > 0 such that se > sB for all E [ E(d, c).

2. Let d=2, u satisfies (56) and |Ou3P| \ cE3. Then there exists
E(c) > 0 such that se ] sB for all E [ E(d, c) and sgn(se−sB)=sgn(Ou3P).

3. Let d=2 and Ou3P=0. If u satisfies (56) and O(u2−Ou2P)2P \ cE4

then there exists Ē(c) > 0 such that se < sB for all E [ Ē(c).

The following corollary follows easily from Proposition 2. Consider
the n-component system where s takes the values s1, s2,..., sn with proba-
bilities p1, p2,..., pn, pi > 0, p1+p2+·· ·+pn=1. We shall also assume that
the system is irreducible, i.e., si ] sj, 1 [ i, j [ n. Denote pmin=
min(p1, p2,..., pn).

Corollary 1.

1. Let d \ 3. If |u| [ E(d, pmin) then se > sB.
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2. Let d=2. Assume that n=2 and p1 > p2. Then se ] sB provided
|u| [ E(c), where c=p2(1−(

p2
p1
)2). Moreover, if s2 > s1 then se > sB. In the

opposite case, i.e., when s1 > s2 one has sB > se.

3. Let d=2. Assume that n=3 and Ou3P=0. Then there exists
c1(p1, p2, p3) > 0 such that se < sB if |u| [ Ē(c1). In particular, if s1=1+E,
s2=1, s3=1− E and p1=p3=p, p2=1−2p, 0 < p <

1
2 then c1(p1, p2, p3)

=2p(1−2p) and se < sB under condition |u| [ Ē(2p(1−2p)).

Finally, we conjecture that for n-component systems the effective
conductivity coincides with the Bruggeman approximation only if the
probability distribution {s} is almost self-dual, see (36).

4. CONCLUDING REMARKS

1. We have derived the exact formulae for the first 5 orders of the
expansion of the effective conductivity in terms of the moments of the dis-
order parameter u in arbitrary dimension. In the 2D case we have also
found the 6th order terms. It is quite interesting to extend these results to
other types of 2D lattices and to the continuous plaquetes systems. Notice
that our duality analysis holds for the general 2D case. Hence, if the
expansion (6) is valid, it is enough to find a23, a

2
5, a

2
2, 3 in order to determine

all other terms up to the 6th order.

2. We have shown that Bruggeman’s solution (55) gives a remarkably
accurate approximation for the effective conductivity of the 2D random
many-component lattice wire system. It turns out that in the case of square
lattice the first four orders of the expansion of Bruggeman’s solution in
terms of the moments of the disorder parameter coincide with the corre-
sponding expansion of the exact solution. However, in the 5th order the
Bruggeman approximation deviates from the exact one. An interesting and
natural problem is to verify whether such behaviour is characteristic for the
square lattice or it also holds for other 2D lattices. It is also interesting to
analyse the relation between Bruggeman’s solution and effective conduc-
tivity for the continuous 2D random composites. Recently four isotropic
three-component S3-permutation invariant regular structures with three-
fold rotation lattice symmetries in the 2D case were treated numerically. (14)

A simple cubic equation with one free parameter A \ 0

s3e+AJ1s
2
e −AJ2se−J3=0, J1=C

3

i=1
si, J2=C

i ] j
sisj, J3=s1s2s3

was proposed as an algebraic equation of minimal order. Its solution share
many properties with se and corresponds to Bruggeman’s solution when
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A=1
3 . The numerically estimated values of A corresponding to different

cases were calculated with a very high precision. It appears that they are
distinct and lie rather far from 1

3 for some of the structures. This indicates a
strong dependence of se on plane symmetries in contrast with the two-
component case.
3. Recently in the paper by Kamenshchik and Khalatnikov (15) the

perturbation theory was developed for the periodic three-component
plaquetes lattice systems with two-fold rotation lattice symmetry. We hope
that their technique combined with our approach will lead to the exact
expansion for the effective conductivity in the random plaquetes situation.
4. After the paper was submitted we were informed about the paper

by Luck (16) where very similar results were obtained using different method
for calculating an expansion for the effective conductivity. In our opinion
the approach we use has certain advantages. First of all, it is rigorous and,
hence, more suitable for mathematical audience. Secondly, it gives arbi-
trary good rigorous bounds for the effective conductivity (see (7)).
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